Γ΄ ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΎΝΣΗΣ

ΘΕΜΑ 1ο

Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

- 1. Η ΗΕΔ μιας ηλεκτρικής πηγής εκφράζει:
 - **α.** την ενέργεια που παρέχει η πηγή σε κάθε μονάδα φορτίου που διέρχεται μέσα από αυτή.
 - **β.** τη διαφορά δυναμικού στους πόλους της πηγής, όταν η πηγή διαρρέεται από ρεύμα.
 - γ. το φορτίο που παρέχει η πηγή στο κύκλωμα.
 - **δ.** την ενέργεια που μετατρέπεται σε θερμότητα στο εσωτερικό της πηγής, στη μονάδα του χρόνου.

(Μονάδες 4)

- **2.** Τετράγωνο συρμάτινο πλαίσιο βρίσκεται ολόκληρο μέσα σε ομογενές μαγνητικό πεδίο. Αν το πλαίσιο κινείται με σταθερή ταχύτητα \vec{v} , με το επίπεδό του κάθετο στις δυναμικές γραμμές του πεδίου, τότε:
 - **α.** το πλαίσιο διαρρέεται από ρεύμα που έχει τη φορά των δεικτών του ρολογιού.
 - **β.** το πλαίσιο διαρρέεται από ρεύμα που έχει φορά αντίθετη από τη φορά των δεικτών του ρολογιού.
 - γ. το πλαίσιο δε διαρρέεται από ρεύμα.
 - **δ.** η φορά του ρεύματος εξαρτάται από το μέτρο της ταχύτητας \vec{v} .

(Μονάδες 4)

3. Στα άκρα κυκλώματος, το οποίο περιλαμβάνει ωμική αντίσταση, ιδανικό πηνίο και πυκνωτή, συνδεδεμένα σε σειρά, εφαρμόζεται εναλλασσόμενη

τάση $V = V_0 ημωt$. Αν η επαγωγική αντίσταση του πηνίου αυξηθεί, τότε η εμπέδηση του κυκλώματος:

- α. θα αυξηθεί.
- **β.** θα ελαττωθεί.
- γ. θα παραμείνει η ίδια.
- δ. μπορεί να είναι οποιοδήποτε από τα παραπάνω.

(Μονάδες 5)

4. Σε μια απλή αρμονική ταλάντωση πλάτους x_0 η κινητική ενέργεια είναι ίση με τη δυναμική ενέργεια στις θέσεις:

$$\alpha \cdot x = 0$$

$$\beta. \ \ x = \pm x_0$$

$$\alpha \cdot x = 0$$
 $\beta \cdot x = \pm x_0$ $\gamma \cdot x = \pm \frac{x_0 \sqrt{2}}{2}$ $\delta \cdot x = \pm x_0 \sqrt{2}$

8.
$$x = \pm x_0 \sqrt{2}$$

(Μονάδες 4)

5. Να χαρακτηρίσετε κάθε μια από τις παρακάτω προτάσεις ως σωστή (Σ) ή λανθασμένη (Λ).

Κύκλωμα εναλλασσομένου ρεύματος RLC με ιδανικά στοιχεία σε σειρά τροφοδοτείται από πηγή τάσης $V = V_0 \eta \mu \omega t$ και παρουσιάζει επαγωγική συμπεριφορά.

- α. Η εμπέδηση του πηνίου είναι μικρότερη από την εμπέδηση του πυκνωτή.
- β. Η τάση της πηγής καθυστερεί σε σχέση με την ένταση του ρεύματος κατά γωνία θ.
- γ. Για να αποκτήσει το κύκλωμα ωμική συμπεριφορά πρέπει να μειώσουμε την τιμή της χωρητικότητας C του πυκνωτή.
- δ. Για να αποκτήσει το κύκλωμα ωμική συμπεριφορά πρέπει να μειώσουμε την τιμή του συντελεστή αυτεπαγωγής L.

(Μονάδες 4)

6. Να χαρακτηρίσετε κάθε μια από τις παρακάτω προτάσεις ως σωστή (Σ) ή λανθασμένη (Λ).

Η περίοδος της ταλάντωσης ενός συστήματος ελατηρίου-μάζας εξαρτάται:

- α. από τη μάζα m.
- β. από το πλάτος της ταλάντωσης.
- γ. από τη σταθερά Κ του ελατηρίου.
- δ. από την αρχική φάση της ταλάντωσης.

(Μονάδες 4)

ΘΕΜΑ 20

1. Να αναφέρετε δύο κανόνες της Φυσικής που είναι συνέπεια της αρχής διατήρησης της ενέργειας και να δώσετε τις διατυπώσεις τους.

(Μονάδες 7)

- **2.** Σε ένα κύκλωμα RLC σε σειρά ο συντελεστής ισχύος είναι $συνθ = \frac{1}{2}$. Η συμπεριφορά του κυκλώματος είναι:
 - α. επαγωγική.
 - β. χωρητική.
 - γ. ωμική.

Να επιλέξετε τις σωστές προτάσεις και να δικαιολογήσετε την επιλογή σας.

(Μονάδες 8)

3. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση με κυκλική συχνότητα ω και πλάτος x_0 . Να γράψετε τις εξισώσεις της απομάκρυνσης x, της ταχύτητας v και της επιτάχυνσης a του σώματος σε συνάρτηση με το χρόνο, aν τη χρονική στιγμή t=0 είναι x=0 και v<0.

(Μονάδες 10)

ΘΕΜΑ 30

Αντιστάτης με ωμική αντίσταση R και πυκνωτής με χωρητικότητα C συνδέονται σε σειρά και το σύστημα τροφοδοτείται με εναλλασσόμενη τάση, η οποία έχει εξίσωση $V=400\sqrt{2}\,\eta\mu\,200\,t$ (S.I.). Η ένταση του ρεύματος που διαρρέει το κύκλωμα δίνεται από την εξίσωση $I=2\eta\mu(200t+\frac{\pi}{4})$ (S.I.).

Α. Να υπολογίσετε την εμπέδηση του κυκλώματος και τη διαφορά φάσης μεταξύ της τάσης που εφαρμόζεται στα άκρα του κυκλώματος και της έντασης του ρεύματος που διαρρέει το κύκλωμα.

(Μονάδες 6)

Β. Να προσδιορίσετε τις τιμές της ωμικής αντίστασης *R* του αντιστάτη και της χωρητικότητας *C* του πυκνωτή.

(Μονάδες 6)

- Γ. Ανάμεσα στον αντιστάτη και τον πυκνωτή συνδέεται ιδανικό πηνίο.
 - **Γ1.** Να υπολογίσετε το συντελεστή αυτεπαγωγής του πηνίου, ώστε ο συντελεστής ισχύος του κυκλώματος να γίνει ίσος με τη μονάδα.

(Μονάδες 6)

Γ2. Να υπολογίσετε την ενεργό τιμή της τάσης στα άκρα του συστήματος πηνίο-πυκνωτής.

(Μονάδες 7)

ΘΕΜΑ 40

Μικρή μεταλλική σφαίρα μάζας m=0.1kg φέρει ηλεκτρικό φορτίο $q=10^{-3}C$. Η σφαίρα είναι δεμένη με μονωτικό σύνδεσμο στο ελεύθερο άκρο ενός οριζόντιου ελατηρίου σταθεράς $k=10^3 \frac{N}{m}$, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. Το σύστημα βρίσκεται μέσα σε οριζόντιο ομογενές ηλεκτρικό πεδίο έντασης μέτρου $E=2\cdot 10^5 \frac{N}{C}$, του οποίου οι δυναμικές γραμμές είναι παράλληλες προς τον άξονα του ελατηρίου. Η σφαίρα ισορροπεί πάνω σε λείο οριζόντιο επίπεδο από μονωτικό υλικό και το ελατή-

ριο είναι επιμηκυνμένο. Εκτρέπουμε τη σφαίρα από τη θέση ισορροπίας της κατά τη διεύθυνση του άξονα του ελατηρίου κατά $x_0 = 0.1 \, m$ και την αφήνουμε ελεύθερη να κινηθεί.

α. Να αποδείξετε ότι η σφαίρα θα εκτελέσει απλή αρμονική ταλάντωση.

(Μονάδες 7)

β. Να υπολογίσετε την περίοδο της ταλάντωσης.

(Μονάδες 5)

γ. Να γράψετε την εξίσωση του μέτρου της δύναμης του ελατηρίου σε συνάρτηση με το χρόνο, αν ως αρχή των χρόνων (t=0) θεωρήσουμε τη χρονική στιγμή που η σφαίρα διέρχεται από τη θέση ισορροπίας της και κινείται κατά τη θετική φορά.

(Μονάδες 7)

δ. Αν τη στιγμή που η σφαίρα διέρχεται από τη θέση ισορροπίας της και κινείται κατά τη θετική φορά καταργηθεί ακαριαία το ηλεκτρικό πεδίο, ποιο θα είναι το πλάτος της ταλάντωσης της σφαίρας.

(Μονάδες 6)