Χημεία - Βιοχημεία Γ' Λυκείου Τεχνολογικής Κατεύθυνσης

<u>Ζήτημα 1</u>

1.1	Το pH ενός υδατικού διαλύματος ασθενούς βάσης συγκέντρωσης 0,1 M στους 25°C μπορεί να είναι:			
	A) 1			
	B) 13			
	Γ) 11,5			
	Δ) 14			
	Να γράψετε στο τετράδιό σας, το γράμμα που αντιστοιχεί στη σωστή απάντηση.			
	(Μονάδες 4)			
1.2	Δίδονται οι παρακάτω χημικές εξισώσεις:			
	$HCO_3^- + H_2O \stackrel{\rightarrow}{\leftarrow} H_2CO_3 + OH^-$ (I)			
	$HCO_3^- + H_2O \stackrel{\rightarrow}{\leftarrow} CO_3^{2-} + H_3O^+$ (II)			
	Σύμφωνα με τη θεωρία των Brönsted – Lowry το ιόν HCO_3^- δρα στην (I) ως			
	(Μονάδες 3)			
1.3	Ποιο είναι το κατάλληλο ζεύγος αντιδραστηρίου Grignard και καρβονυλικής ένωσης που οδηγεί στην παρασκευή της 2-προπανόλης; Να γραφούν οι αντίστοιχες χημικές εξισώσεις. (Μονάδες 4)			
1.4	Συμπληρώστε τις παρακάτω χημικές εξισώσεις:			
	$CH_3CH_2Cl + NaCN \rightarrow \dots + \dots + \dots$			
	$CH_2=O+H_2 \rightarrow \dots$			
	$CH_3COOH + NaHCO_3 \rightarrow \dots + \dots + \dots + \dots + \dots$			
	Να μεταφέρετε στο τετράδιό σας, τις παραπάνω εξισώσεις συμπληρωμένες με τις κατάλληλες συνθήκες, όπου χρειάζεται.			
	(Μονάδες 4)			

1.5 Δίνεται το παρακάτω διάγραμμα οργανικών αντιδράσεων:

$$CH_{3} - CH = CH_{2} \xrightarrow{+ HC1} A$$

$$\downarrow + H_{2}O$$

$$B \xrightarrow{+ Na} \Gamma$$

$$A + \Gamma \rightarrow \Delta$$

α) Ποιοι είναι οι συντακτικοί τύποι των οργανικών ενώσεων Α, Β, Γ και Δ, αν γνωρίζουμε ότι αυτές αποτελούν τα κύρια προϊόντα; Να γραφούν οι χημικές εξισώσεις.

(Μονάδες 8)

β) Χαρακτηρίστε την καθεμιά από τις μετατροπές σαν προσθήκη, υποκατάσταση ή αντίδραση όξινου χαρακτήρα.

(Μονάδες 2)

Ζήτημα 2

Διαλύουμε 0,4 mol ασθενούς οξέος ΗΑ στο νερό οπότε σχηματίζεται διάλυμα (X) όγκου 4 L.

α) Ποιο είναι το pΗ του διαλύματος.

(Μονάδες 6)

β) Πόσα mol στερεού NaA πρέπει να προσθέσουμε σε 2 L από το διάλυμα (X) ώστε να προκύψει διάλυμα (Y) με pH=5; Με την προσθήκη του NaA, δεν μεταβάλλεται ο όγκος του διαλύματος (X).

(Μονάδες 8)

γ) Να υπολογισθούν τα L νερού που πρέπει να προσθέσουμε στα υπόλοιπα 2 L από το αρχικό διάλυμα (X), ώστε να μεταβληθεί το pH του κατά μία μονάδα.

(Μονάδες 11)

Δίδονται: Θ =25°C, K_W = 10^{-14} και K_a = 10^{-5} (του HA). Σε κάθε περίπτωση, μπορούν να γίνουν οι προσεγγίσεις που προβλέπονται από τη θεωρία.

Ζήτημα 3

3.1	Σημειώστε ποιες προτάσεις είναι σωστές και ποιες λανθασμένες. Ξαναδιατυπώστε τις λανθασμένες προτάσεις με το σωστό τρόπο:			
	α)	Σύμφωνα με το μοντέλο κλειδιού-κλειδαριάς, το ενεργό κέντρο του ενζύμου αποκτο συμπληρωματικό σχήμα με το υπόστρωμα της ενζυμικής αντίδρασης, μετά την σύνδεσι μαζί του.		
		pode to a	(Μονάδες 1)	
	β)	Τα πρόδρομα μόρια σχηματίζουν δομικά συστατικά (π.χ. αμινοξέα, λι οποία με τη σειρά τους συνθέτουν τα μακρομόρια.	παρά οξέα), τα	
			(Μονάδες 1)	
	γ) Καταβολικές αντιδράσεις ονομάζονται εκείνες κατά τις οποίες μεγαλύτερες σπώνται σε απλούστερες και μικρότερες, όπως π.χ. η υδρόλυση των πρωτεϊνο			
			(Μονάδες 1)	
3.2	Δώ	στε σύντομους ορισμούς στις παρακάτω έννοιες:		
	α)	Σταθερά Michaelis	(Μονάδες 1)	
	β)	Ισοηλεκτρικό σημείο αμινοξέος	(Μονάδες 1)	
	γ)	Ριβοσωμικό RNA	(Μονάδες 1)	
	δ)	Ημιακεταλικό υδροξύλιο	(Μονάδες 1)	
	ε)	Γλυκοζίτες	(Μονάδες 1)	
3.3	Συμπληρώστε με τους κατάλληλους όρους τα κενά στις παρακάτω προτάσεις:			
	α)	Για να μετρηθεί ενός ενζύμου, αρκεί να μετρηθεί αντίδρασης που καταλύει.	η ταχύτητα της	
		, 13	(Μονάδες 2)	
	β)	Κατά τον κύκλο του κιτρικού οξέος η οξείδωση ενός μορίου ακέτυλο – συνολική ενεργειακή απόδοση ΑΤΡ .	- CoA οδηγεί σε	
			(Μονάδες 2)	
	γ)	Οι αζωτούχες βάσεις του DNA είναι οι πουρίνες , δηλαδή η		
			(Μονάδες 2)	
	δ)	Τα ζεύγη Α και Τ συγκρατούνται μεταξύ τους με δεσμούς υδρ ζεύγη C και G συγκρατούνται μεταξύ τους με δεσμούς υδρογόν	•	
			(Μονάδες 2)	
	ε)	Η δευτεροταγής δομή των πρωτεϊνών μπορεί να έχει τη μορφή είτε της		
		είτε της	(Μονάδες 2)	
			, ,	

- 3.4 Επιλέξτε την σωστή ή τις σωστές απαντήσεις στις παρακάτω προτάσεις:
 - α) Από δύο μόρια γλυκόζης αποτελείται:
 - 1. το καλαμοσάκχαρο
 - 2. η μαλτόζη
 - 3. το γαλακτοζάκχαρο
 - 4. το γλυκογόνο

(Μονάδες 2)

- β) Ποιο/ποια από τα παρακάτω δεν μπορεί ποτέ να αναφέρεται/αναφέρονται σε ένα αμινοξύ;
 - 1. ενεργό κέντρο
 - 2. ιονιζόμενες ομάδες
 - 3. αμφολυτικός χαρακτήρας
 - 4. πρωτοταγής δομή
 - 5. γλυκοπλαστικός χαρακτήρας

(Μονάδες 2)

3.5 Αντιστοιχείστε τους όρους της πρώτης στήλης με αυτούς της δεύτερης στήλης. Ένας όρος της μίας στήλης μπορεί να αντιστοιχεί σε περισσότερους από έναν όρο της άλλης στήλης και αντίστροφα.

ΣΤΗΛΗ Ι	ΣΤΗΛΗ ΙΙ
Α. Οξαλοξικό οξύ	1. NAD,FAD
Β. Προσθετική ομάδα	2. αλλοστερικό κέντρο
Γ. Δομικός ρόλος	3. κυτταρίνη
Δ. Συνένζυμο	4. κύκλος κιτρικού οξέος
Ε. Ένζυμο	5. ATP
Ζ. Ενεργειακό νόμισμα	6. αίμη

(Μονάδες 3)

Ζήτημα 4

- **4.1** Μεταβολισμός ονομάζεται το σύνολο των βιοχημικών αντιδράσεων που επιτελούνται στο εσωτερικό ενός οργανισμού. Το σύνολο όμως αυτό των αντιδράσεων είναι πολύπλοκο και χρειάζεται συντονισμό και ακριβή ρύθμιση.
 - α) Αναφέρατε ονομαστικά τους μηχανισμούς με τους οποίους επιτυγχάνεται αυτή η ρύθμιση.

(Μονάδες 3)

β) Αναπτύξτε αναλυτικά δύο από αυτούς (οποιουσδήποτε).

(Μονάδες 2)

γ) Ένας επιπλέον τρόπος ρύθμισης του μεταβολισμού είναι η ρύθμιση με ανάδραση. Εξηγήστε το μηχανισμό αυτού του τύπου ρύθμισης και δώστε ένα σύντομο σχηματικό παράδειγμα.

(Μονάδες 2)

- **4.2**. Δύο βιοχημικοί επιθυμούν να προσδιορίσουν την πρωτοταγή δομή ενός μικρού πεπτιδίου. Για το σκοπό αυτό ο πρώτος προτείνει να ακολουθήσουν τη μέθοδο αποικοδόμησης κατά Edman, ενώ ο δεύτερος τη μέθοδο που περιλαμβάνει υδρόλυση του αρχικού πεπτιδίου σε μικρότερα, το διαχωρισμό τους με χρωματογραφία και στη συνέχεια την εύρεση της αλληλουχίας των αμινοξέων τους.
 - α) Ποια είναι η μέθοδος αποικοδόμησης κατά Edman;

(Μονάδες 2)

β) Πιστεύετε πως και οι δύο μέθοδοι είναι εξίσου αποτελεσματικές στη συγκεκριμένη περίπτωση;

(Μονάδες 1)

Συμπτωματικά όμως συναντούν έναν τρίτο συνάδελφό τους, ο οποίος είχε ήδη εφαρμόσει τη δεύτερη μεθοδολογία στο ίδιο πεπτίδιο, οπότε και τους προμήθευσε έτοιμα τα αποτελέσματα: τα πεπτίδια που προέκυψαν από την υδρόλυση του αρχικού ήταν τα εξής:

```
Asp – Val

Lys – Ala

His –Thr – Asp

Ala – Arg – Phe

Thr – Asp – Val – Lys
```

γ) Από πόσα αμινοξέα αποτελείται το αρχικό πεπτίδιο; Με τι δεσμούς ενώνονται τα αμινοξέα μεταξύ τους;

(Μονάδες 2)

δ) Πόσες ελεύθερες αμινομάδες και καρβοξυλομάδες είχε το αρχικό ολιγοπεπτίδιο;

(Μονάδες 1)

ε) Να κατασκευασθεί ο πεπτιδικός χάρτης των επικαλυπτόμενων θραυσμάτων και να βρεθεί η πρωτοταγής δομή του πεπτιδίου.

(Μονάδες 3)

- **4.3.** Η γλυκόλυση είναι το πρώτο στάδιο του καταβολισμού της γλυκόζης.
 - α) Ποια είναι τα τελικά προϊόντα της αντίδρασης;

(Μονάδες 3)

β) Η κύρια οργανική ένωση η οποία παράγεται από τη γλυκόλυση, με ποιες αντιδράσεις διασπάται στη συνέχεια, ανάλογα με το εάν η αποικοδόμηση γίνεται σε αερόβιες ή αναερόβιες συνθήκες; Ποια είναι τα τελικά προϊόντα αυτών των αντιδράσεων, σε κάθε περίπτωση;

(Μονάδες 3)

γ) Ποια αντίδραση έχει πορεία που μοιάζει αντίστροφη της πορείας της γλυκόλυσης; Γιατί θεωρούμε ότι αυτές οι δύο αντιδράσεις φαίνεται να είναι αντίστροφες; Γιατί όμως δεν είναι πράγματι αντίστροφες;

(Μονάδες 3)